Vertical mixing in the deep region of the Sunda Strait, Indonesia

Adi Purwandana


The characteristics of mixing properties in the Sunda Strait waters were revealed using indirect method, employing the archived CTD datasets of the RCO-BRIN. The mixing properties represented by turbulent kinetic energy dissipation (TKE) rate and vertical eddy diffusivity were inferred using an improved Thorpe Method from gravitationally unstable density profiles measured by CTD in July 2001. This study is aimed to reveal the rate of water mass mixing quantitatively. Vertically, the region was characterized by three distinctive regimes of TKE dissipation rate, i.e. 8.2×10-8 W/kg in the near-surface and upper thermocline layer, 2.6×10-7 W/kg in the lower thermocline layer and 9.1×10-9 W/kg in the intermediate and deep layer. The spatial variability of the dissipation rate is likely related to topography roughness pattern where enhanced dissipation rate mainly occurred in the steep topography region. No specific regime can be clustered from the vertical diffusivity value due to its intermittent pattern, possibly due to the impact of topography roughness and stratification variability in space and time. The maximum enhanced values reached 3×10-4 m2/s. It was suggested that strong shear due to interaction between sharp changing topography, the strait throughflow and tidal currents controls the mixing rate in this region. This indirect estimates need to be validated against microstructure measurements via a continuously profiling which covers at least one tidal cycle to investigate possible temporal variability


vertical mixing, Thorpe Method, dissipation rate, vertical diffusivity

Full Text:



Bouruet-Aubertot, P., Cuypers, Y., Ferron, B., Dausse, D., Ménage, O., Atmadipoera, A., & Jaya, I. (2018). Contrasted turbulence intensities in the Indonesian Throughflow: a challenge for parameterizing energy dissipation rate. Ocean Dynamics, 68(7), 779–800. doi: 10.1007/s10236-018-1159-3

Dillon, T. M. (1982). Vertical overturns: A comparison of Thorpe and Ozmidov length scales. Journal of Geophysical Research, 87(C12), 9601. doi: 10.1029/JC087iC12p09601

Egbert, G. D., & Erofeeva, S. Y. (2002). Efficient Inverse Modeling of Barotropic Ocean Tides. Journal of Atmospheric and Oceanic Technology, 19(February), 183–204. doi:<0183:EIMOBO>2.0.CO;2

Frants, M., Damerell, G. M., Gille, S. T., Heywood, K. J., MacKinnon, J., & Sprintall, J. (2013). An assessment of density-based finescale methods for estimating diapycnal diffusivity in the southern Ocean. Journal of Atmospheric and Oceanic Technology, 30(11), 2647–2661. doi: 10.1175/JTECH-D-12-00241.1

Galbraith, P. S., & Kelley, D. E. (1996). Identifying Overturns in CTD Profiles. Journal of Atmospheric and Oceanic Technology, 13, 688–702. doi: 10.1146/annurev.fluid.39.050905.110314

Gargett, A., & Garner, T. (2008). Determining Thorpe scales from ship-lowered CTD density profiles. Journal of Atmospheric and Oceanic Technology, 25(9), 1657–1670. doi: 10.1175/2008JTECHO541.1

Koch-Larrouy, A., Atmadipoera, A., van Beek, P., Madec, G., Aucan, J., Lyard, F., Grelet, J., & Souhaut, M. (2015). Estimates of tidal mixing in the Indonesian archipelago from multidisciplinary INDOMIX in-situ data. Deep-Sea Research Part I: Oceanographic Research Papers, 106, 136–153. doi: 10.1016/j.dsr.2015.09.007

Koch-Larrouy, A., Lengaigne, M., Terray, P., Madec, G., & Masson, S. (2010). Tidal mixing in the Indonesian seas and its effect on the tropical climate system. Climate Dynamics, 34(6), 891–904. doi: 10.1007/s00382-009-0642-4

Law, C. S., Abraham, E. R., Watson, A. J., & Liddicoat, M. I. (2003). Vertical eddy diffusion and nutrient supply to the surface mixed layer of the Antarctic Circumpolar Current. Journal of Geophysical Research, 108(C8, 3272), 1–14. doi: 10.1029/2002JC001604

Mujiasih, S., Hartanto, D., Beckers, J., & Barth, A. (2021). Reducing the error in estimates of the Sunda Strait currents by blending HF radar currents with model results. Continental Shelf Research, 228, 104512. doi: 10.1016/j.csr.2021.104512

Nagai, T., Hibiya, T., & Syamsudin, F. (2021). Direct Estimates of Turbulent Mixing in the Indonesian Archipelago and Its Role in the Transformation of the Indonesian Throughflow Waters. Geophysical Research Letters, 48(6), e2020GL091731. doi:

Osborn, T. R. (1980). Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements. In Journal of Physical Oceanography (Vol. 10, Issue 1, pp. 83–89). doi: 10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2

Park, Y. H., Lee, J. H., Durand, I., & Hong, C. S. (2014). Validation of Thorpe-scale-derived vertical diffusivities against microstructure measurements in the Kerguelen region. Biogeosciences, 11(23), 6927–6937. doi: 10.5194/bg-11-6927-2014

Purwandana, A. (2019). Turbulent Mixing in the Indonesian Seas. Sorbonne University.

Purwandana, A., Cuypers, Y., & Bouruet-Aubertot, P. (2021a). Observation of internal tides, nonlinear internal waves and mixing in the Lombok Strait, Indonesia. Continental Shelf Research, 216. doi: 10.1016/j.csr.2021.104358

Purwandana, A., Cuypers, Y., Bouruet-Aubertot, P., Nagai, T., Hibiya, T., & Atmadipoera, A. S. (2020). Spatial structure of turbulent mixing inferred from historical CTD datasets in the Indonesian seas. Progress in Oceanography, 184(March), 102312. doi:

Purwandana, A., Iskandar, M. R., Edikusmanto, Zheng, W., Fadli, M., Dwi Santoso, P., Corvianawatie, C., Muhadjirin, & Wattimena, M. C. (2021b). Percampuran vertikal di Perairan Laut Maluku dan Talaud pada bulan Februari 2021. Oseanologi Dan Limnologi Di Indonesia, 6(2), 97–106. doi: 10.14203/oldi.2021.v6i2.363

Silubun, D. T., Gaol, J. L., & Naulita, Y. (2015). Estimasi intensitas upwelling pantai dari satelit Aquamodis di perairan Selatan Jawa dan Barat Sumatera. Jurnal Teknologi Perikanan Dan Kelautan, 6(1), 21–29.

Stansfield, K., Garrett, C., & Dewey, R. (2001). The probability distribution of the Thorpe displacement within overturns in Juan de Fuca Strait. Journal of Physical Oceanography, 31(12), 3421–3434. doi: 10.1175/1520-0485(2001)031<3421:TPDOTT>2.0.CO;2

Susanto, R. D., Gordon, L., & Zheng, Q. (2001). Upwelling along the coasts of Java and Sumatra and its relation to ENSO. Geophysical Research Letters, 28(8), 1599–1602.

Tan, S., Pratt, L. J., Yuan, D., Li, X., Wang, Z., Li, Y., Corvianawatie, C., Surinati, D., Sandra, A., & Bayhaqi, A. (2020). Hydraulics and mixing of the deep overflow in the Lifamatola Passage of the Indonesian seas. Journal of Physical Oceanography, 1–52. doi: 10.1175/JPO-D-19-0326.1

Thorpe, S. A. (1977). Turbulence and Mixing in a Scottish Loch. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 286(1334), 125–181. doi: 10.1098/rsta.1977.0112

Voris, H. K. (2000). Maps of Pleistocene sea levels in SoutheastAsia : shorelines, river systems and time durations. Journal of Biogeography, 27(5), 1153–1167.

Wyrtki, K. (1961). Physical oceanography of the Southeast Asian waters. Scietific Resultas of Marine Investigations of the South China Sea and the Gulf of Thailand, 2, 195. doi: 10.1017/S0025315400054370

Xu, T., Li, S., Hamzah, F., Setiawan, A., Susanto, R. D., Cao, G., & Wei, Z. (2018). Intraseasonal flow and its impact on the chlorophyll-a concentration in the Sunda Strait and its vicinity. Deep-Sea Research Part I, 136, 84–90. doi: 10.1016/j.dsr.2018.04.003

Yang, Q., Zhao, W., Li, M., & Tian, J. (2014). Spatial Structure of Turbulent Mixing in the Northwestern Pacific Ocean. Journal of Physical Oceanography, 44(8), 2235–2247. doi: 10.1175/JPO-D-13-0148.1


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Powered by OJS | Design by ThemeOJS