Faktor Hidro-Oseanografi Terhadap Distribusi Air Tawar Bersuhu Rendah Dekat Pantai Sekitar Lokasi Keluaran Air Tanah Lepas Pantai (KALP) di Perairan Lombok Utara, Indonesia
Abstract
The Influence of Hydro-Oceanography Factors on the Distribution of Near-shore Low-Temperature Freshwater around Submarine Groundwater Discharge (SGD) Area in the North Lombok Waters, Indonesia. North Lombok coast has lot of resources of Submarine Groundwater Discharge (SGD). The biggest discharge appeared in the Krakas Beach where cold groundwater discharge many spots might trigger anomalies in the ambient water temperature. This study was aimed at determining the distribution of the cold groundwater discharge. A field survey was conducted on March 23th -26th, 2016. Flow model and statistical analysis were employed to determine the transport pattern of temperature anomalies. Vertically, the current direction is in accordance with Ekman spiral that triggers the vertical cold groundwater distribution. The current speed during the displacement toward high tide ranges 0-0.15 cm/s which predominantly moves south-westward. During low tide, tidal current was predominantly north-eastward moving at 0-0.3 cm/s. Temperature variation around the SGD spot fluctuated following sea surface surface elevation dynamics in which these two parameters has a correlation value of 63%.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Bakti, H., Lubis, R., Delinom, R., & Naily, W. (2012). Identify on submarine ground water discharge (SGD) on the alluvial coast of North Lombok, West Nusa Tenggara. Jurnal Lingkungan Dan Bencana Geologi, 3(2), 133–149.
Beck, A. J., Rapaglia, J. P., Cochran, J. K., & Bokuniewicz, H. J. (2007). Radium mass-balance in Jamaica Bay, NY: Evidence for a substantial flux of submarine groundwater. Marine Chemistry, 106(3–4), 419–441. https://doi.org/10.1016/j.marchem.2007.03.008
Boehm, A. B., Sanders, B. F., & Winant, C. D. (2002). Cross-shelf transport at Huntington Beach. Implications for the fate of sewage discharged through an offshore ocean outfall. Environmental Science and Technology, 36(9), 1899–1906. https://doi.org/10.1021/es0111986
Costa, M. B., Macedo, E. C., Valle-Levinson, A., & Siegle, E. (2017). Wave and tidal flushing in a near-equatorial mesotidal atoll. Coral Reefs. https://doi.org/10.1007/s00338-016-1525-x
Dijkstra, H. A. (2008). Dynamical oceanography. Dynamical Oceanography. https://doi.org/10.1007/978-3-540-76376-5
Johan, O., Kusumah, G., & Wisha, U. J. (2018). Kondisi Terumbu Karang di kawasan KALP Pantai Krakas, Lombok Utara. Jurnal Segara, 13(3), 193–200. https://doi.org/10.15578/segara.v13i3.6548
Lestiana, H., Sukristiyanti, S., Bakti, H., & Lubis, R. F. (2017). Pemanfaatan Band Termal Citra Landsat Untuk Identifikasi Keluaran Airtanah Lepas Pantai (KALP) di Pantai Utara Lombok. RISET Geologi Dan Pertambangan, 27(1), 65–75. https://doi.org/10.14203/risetgeotam2017.v27.422
Lubis, R. F., Bakti, H., & Suriadarma, A. (2011). Submarine Gdroundwater Discharge ( SGD ) In Indonesia. Jurnal Riset Dan Geologi Pertambangan, 21(1), 57–62. https://doi.org/https://doi.org/10.14203/risetgeotam2011.v21.46
Mehdiabadi, F. E., Mehdizadeh, M. M., & Rahbani, M. (2015). Simulating Wind Driven Waves in the Strait of Hormuz using MIKE21 (Simulasi Gelombang Angin di Selat Hormuz Menggunakan MIKE21). ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 20(1), 1. https://doi.org/10.14710/ik.ijms.20.1.1-8
Moore, W. S. (2010). The Effect of Submarine Groundwater Discharge on the Ocean. Annual Review of Marine Science. https://doi.org/10.1146/annurev-marine-120308-081019
Ningsih, N. S., Rachmayani, R., Hadi, S., & Brodjonegoro, I. S. (2018). Internal Waves Dynamics in the Lombok Strait Studied By a Numerical Model. International Journal of Remote Sensing and Earth Sciences (IJReSES), 5(1), 17–33. https://doi.org/10.30536/j.ijreses.2008.v5.a1226
Oktavia, R., Pariwono, J., & Manurung, P. (2011). Variasi muka laut dan arus geostrofik permukaan perairan selat Sunda berdasarkan data pasut dan angin tahun 2008. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 3(2), 127–152. https://doi.org/https://doi.org/10.29244/jitkt.v3i2.7827
Rachmayani, R., Atma, G., Suprijo, T., & Sari, N. (2006). Marine Current Potential Energy for Environmental Friendly Electricity Generation in Bali , Lombok and Makassar Straits. In Environmental Technology and Management Conference, September 7-8, 2006.
Song, Q., Vecchi, G. A., & Rosati, A. J. (2007). The role of the Indonesian throughflow in the Indo-Pacific climate variability in the GFDL coupled climate model. Journal of Climate. https://doi.org/10.1175/JCLI4133.1
Thompson, C., Smith, L., & Maji, R. (2007). Hydrogeological modeling of submarine groundwater discharge on the continental shelf of Louisiana. Journal of Geophysical Research: Oceans, 112(C03014), 1–13. https://doi.org/10.1029/2006JC003557
Warren, I. R., & Bach, H. K. (1992). MIKE 21: a modelling system for estuaries, coastal waters and seas. Environmental Software, 7(4), 229–240. https://doi.org/10.1016/0266-9838(92)90006-P
Wisha, U. J., Husrin, S., & Prasetyo, G. S. (2016). Hydrodynamics of Bontang Seawaters: Its Effects on the Distribution of Water Quality Parameters. Indonesian Journal of Marine Sciences, 21(2), 123–134. https://doi.org/https://doi.org/10.14710/ik.ijms.21.3.123-134
Wisha, U. J., Husrin, S., & Prihantono, J. (2015). Hidrodinamika Perairan Teluk Banten Pada Musim Peralihan (Agustus–September). ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 20(2), 101–112. https://doi.org/10.14710/ik.ijms.20.2.101-112
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.