Deteksi Tinggi Vegetasi di Delta Mahakam dengan Penginderaan Jauh

Nanin Anggraini, Atriyon Julzarika

Abstract


Detection of Vegetation Height in Mahakam Delta Using Remote Sensing. The vegetation height is a vertical distance between top of the vegetation to ground surface. Vegetation height is one of the parameters for vegetation growth. There are various methods to measure vegetation height; one of them is the use of remote sensing technology. This study aims to map vegetation height in Mahakam Delta by using height models derived from remote sensing data. Such models are Digital Surface Model (DSM) and Digital Terrain Model (DTM). DSM was generated using a combination of interferometric processing of ALOS PALSAR interferometry, X-SAR, Shuttle Radar Topography Mission (SRTM), and geodetic height of Icesat/GLAS satellite imagery. This integration technique incorporated the Digital Elevation Model (DEM) method. The geoid model used in this study was EGM 2008. The following step was the correction of height errors of DSM. Terrain correction was undertaken to convert DSM into DTM, while vegetation heights were obtained from subtraction of DSM and DTM. Vertical accuracy verification refers to a tolerance of 1.96σ (95%) or ~80 cm. In DSM, a vertical accuracy value of 60.4 cm was obtained so that the DSM is feasible for mapping with scale of 1: 10,000, while the DTM was 37 cm so it is also applicable for mapping with such scale. Based on the subtraction of DSM and DTM, the vegetation heights in Mahakam Delta varied between 0 and 64 m.



Keywords


vegetation height, DSM, DTM , Mahakam Delta

References


Arifantia, V. B., Kauffman, J. B., Hadriyanto, D., Murdiyarso, D., & Diana, R. (2019). Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. Forest Ecology and Management, 432, 17–29. https://doi.org/10.1016/j.foreco.2018.08.047

ASPRS. (2014). ASPRS Accuracy Standard for Digital Geospatial Data. ASPRS. Amerika Serikat.

Freeden, W., Nashed, M. Z., & Sonar, T. (2010). Handbook of Geomathemathics. Springer.Kota terbit.

Garcia, M., Saatchi, S., Ustin, & Balzter, H. (2018). Modelling Forest Canopy Height By Integrating Airborne LIDAR Samples With Satellite Radar And Multispectral Imagery. Int J Appl Earth Obs Geoinformation, 66, 159–173. https://doi.org/10.1016/j.jag.2017.11.017

Gastaldo, R. A. (2010). Peat or no peat: Why do the Rajang and Mahakam Deltas differ? International Journal of Coal Geology, 83, 162–172. DOI: 10.1016/j.coal.2010.01.005

Gillani, C, & Wolf. (2006). Adjustment Computations: Spatial Data Analysis. John Wiley and Sons, Inc., Hoboken, New Jersey. Amerika Serikat.

Goel, K. (2013). Advanced Stacking Techniques and Applications in High Resolution SAR Interferometry, München: Universität München.

Hoja, D. & d’Angel, P. (2010). Analysis Of DEM Combination Methods Using High Resolution Optical Stereo Imagery And Interferometric SAR Data, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Volume XXXVIII, Part 1, Calgary, Kanada.

Hoja, D., Reinartz, P., & Schroeder, M. (2006). Comparison Of DEM Generation And Combination Methods Using High Resolution Optical Stereo Imagery And Interferometric SAR Data. International Archives of the Photogrammetry. Remote Sensing and Spatial Information Science. Volume XXXVI. Part 1. Paris. Perancis.

Iskandar. (2010). Kerusakan Hutan Mangrove Delta Mahakam Sangat Parah. https://kaltim.antaranews.com/berita/2821/kerusakan-hutan-mangrove-delta-mahakam-sangat-parah. Diakses 7 juni 2018.

JAXA. (2018). PALSAR Phased Array type L-band Synthetic Aperture Radar, URL: https://www.eorc.jaxa.jp/ALOS/en/about/palsar.htm. Diakses pada Desember 2018.

Julzarika, A. (2011). Teknik Koreksi Bull Eye’s. GeoSARNas. Bogor.

Julzarika, A. (2013). Geological Structure Detection Digitally Using Synthetic Aperture Radar (SAR) Data. Asia Conference of Remote Sensing. Bali. Indonesia.

Julzarika, A. (2015). Height model integration using ALOS PALSAR, X SAR, SRTM C, and Icesat/GLAS. International Journal of Remote Sensing and Earth Science, 12 (2), 107-116.

Julzarika, A. & Carolita, I., (2015). Klasifikasi Penutup Lahan Berbasis Objek Pada Citra SPOT dengan Menggunakan Metode Tree Algorithm. Majalah Ilmiah Globe, 17 (2), 97-104.

Julzarika, A., & Dewi, E. K. (2018). Uji Akurasi Vertikal DTM ALOS PALSAR Terhadap Pengukuran Kombinasi DGNSS-Altimeter. Jurnal Penginderaan Jauh dan Pengolahan Citra Digital, 15 (1), 11-24. http://dx.doi.org/10.30536/j.pjpdcd.2018.v15.a2804

Kumay, D. U. (2015). Remote Sensing Platforms and Sensor. NBKRIST Vidyanagar. India.

Li, Z., Zhu, Q. &. Gold, C. M. (2005). Digital Terrain Modeling Principles and Methodology. CRC Press. Florida. USA.

Lembaga Ilmu Pengetahuan Indonesia. (2018). Limnologi LIPI. http://www.limnologi.lipi.go.id/aboutus.php?id=2. Diakses Juli 2018.

Noggle, G.R, & Frits, G.J. (1983). Introduction Plant Physiology. Second Edition. New Jersey: Prentice Hall, Inc, Englewood Clifts.

Petrie, G. & Kennie, T. (1987). An introduction to terrain modeling: applications and terminology. Universitas Glasgow, Skotlandia.

Sarmap. (2017). Synthetic Aperture Radar and SARScape. URL: http://www.sarmap.ch/pdf/SAR-Guidebook.pdf. diakses Maret 2018.

Sayekti, R.B. (2002). Pengelolaan Terpadu DAS dan Delta Mahakam. Tirta Pela, 12(1), 1-4.

Suhardimana, A., Tsuyuki, S., & Setiawan, Y. (2016). Estimating mean tree crown diameter of mangrove stands using aerial photo. Procedia Environmental Sciences, 33, 416 – 427. https://doi.org/10.1016/j.proenv.2016.03.092

Trisakti, B., & Julzarika, A. (2011). DEM Generation from Stereo ALOS Prism and Its Quality Improvement. International Journal of Remote Sensing and Earth Sciences, 8, 41-48. doi : 10.30536/j.ijreses.2011.v8.a1740

Vanicek, P. & Krakiwsky, E. (1986). Geodesy, the concepts. North-Holland, Amsterdam, NY, Oxford, Tokyo.

Yastikh. (2006). Accuracy and Morphological Analyses of GTOPO30 and SRTM X-C band DEMS in the Test Area Istambul, ISPRS Workshop, Ankara, Turki.

Yayasan Mangrove Lestari. (2012). About Delta Mahakam. http://ymldeltamahakam.blogspot.com/2012/11/about-delta-mahakam.html. diakses 7 juni 2018.

Zimmerman, D. L. & Cressie, N. (1992). Mean squared prediction error in the spatial linear model with estimated covariance parameters. Annuals of the Institute of Statistical Mathematics, 44, 27-43.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Powered by OJS | Design by ThemeOJS