Pengaruh Padat Tebar terhadap Konsumsi Oksigen dan Respons Stres Ikan Cupang Alam (Betta imbellis)

Shofihar Sinansari, Vitas Atmadi Prakoso, Erma Primanita Hayuningtyas, Bambang Priadi, Sri Sundari, Eni Kusrini

Abstract


Effect of Stocking Density on Oxygen Consumption and Stress Response in Crescent Betta (Betta imbellis). Stocking density is one of the determinant parameters for fish growth optimization in aquaculture systems due to its relationship with fish metabolism. Information about the impact of different stocking densities on crescent betta (Betta imbellis) metabolism was not available yet. This study was aimed to analyze the effect of stocking density on oxygen consumption, critical oxygen level, and stress responses in crescent betta.The study was carried out under three different stocking density treatments: 5, 10, and 15 fish/L with three replications using 2.74 ± 0.23 cm total length and 0.22 ± 0.05 g body weight tested fishes.The parameters observed were oxygen consumption, ventilation rate, blood glucose level, cortisol, and critical oxygen level. The result showed that the highest oxygen consumption was found at 5 fish/L stocking density treatment (3.01 ± 0.28 mg O2/g/h), which was significantly different from 10 fish/L (1.01 ± 0.21 mg O2/g/h) and 15 fish/L (0.92 ± 0.08 mg O2/g/h) stocking density treatments. Oxygen consumptions under hypoxic condition was not significantly different compared to normoxic condition.The ventilation rate tends to increase significantly along with the increasing of stocking densities. Critical oxygen levels were not significantly different among the treatments,with the value of 3.31 ± 0.65 mg/L, 3.14 ± 0.29 mg/L, and 2.83 ± 0.19 mg/L for stocking density of 5, 10, and 15 fish/L, respectively. The blood glucose level at 15 fish/L stocking density was significantly higher than others, whereas the cortisol levels was not significantly different among the treatments. The results of this study provided information that the increasing stocking density of cressent betta will decrease their metabolism activity and increase ventilation rate. However, the increase of ventilation rate was negatively correlated with oxygen consumption per breath at higher stocking densities due to decrease in fish activity; and higher stocking densities will decrease oxygen consumption. Based on the results, it can be concluded that the ideal stocking density for crescent betta is 5 fish/L. The increasing of stocking density will decrease oxygen consumption rates and increase the stress level of crescent betta.



Keywords


Betta imbellis, stocking density, oxygen consumption, stress

References


Arifin, O. Z.,Prakoso, V. A., & Pantjara, B.(2017a). Ketahanan ikan tambakan (Helostoma temminckii) terhadap beberapa parameter kualitas air dalam lingkungan budidaya. Jurnal Riset Akuakultur,12(3), 241-251.

Arifin, O. Z., Subagja, J., Prakoso, V. A., & Suhud, E. H. (2017b). Effect of stocking density on growth performance of domesticated barb (Barbonymus balleroides). Indonesian Aquaculture Journal,12(1), 1-6.

Arifin, O. Z., Prakoso, V. A., Kristanto, A. H., Pouil, S., & Slembrouck, J. (2019a). Effect of stocking density on growth, food intake and survival of giant gourami (Osphronemus goramy, Lacepède) larvae. Aquaculture, 509, 159-166.

Arifin, O. Z., Cahyanti, W., & Prakoso, V. A. (2019b). Keragaan pertumbuhan ikan tambakan (Helostoma temminckii Cuvier, 1829) dengan kepadatan berbeda. Media Akuakultur, 14(2), 83-87.

Barcellos, L. G., Nicolaiewsky, S., De Souza, S. G., & Lulhier, F. (1999). The effects of stocking density and social interaction on acute stress response in Nile tilapia Oreochromis niloticus (L.) fingerlings. Aquaculture Research, 30(11‐12), 887-892.

Barcellos, L. J. G., Kreutz, L. C., Quevedo, R. M., Fioreze, I., Cericato, L., Soso, A. B., ... & Ritter, F. (2004). Nursery rearing of jundiá, Rhamdia quelen (Quoy & Gaimard) in cages: cage type, stocking density and stress response to confinement. Aquaculture, 232(1-4), 383-394.

Barton, B. A., & Schreck, C. B. (1987). Metabolic cost of acute physical stress in juvenile steelhead. Transactions of the American Fisheries Society, 116(2), 257-263.

Borger, R., de Boeck, G.,van Auderke, J., Dommisse, R., Blust, R., &van den Linden, A. (1998). Recovery of the energy metabolism after a hypoxic challenge at different temperature conditions: a 31P-nuclear magnetic resonance spectroscopy study with common carp. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 120(1), 143-150.

Boyd, C. E. (1982). Water quality management for pond fish culture. Elsevier Scientific Publishing Co.

Brett, J. R. (1964). The respiratory metabolism and swimming performance of young sockeye salmon. Journal of the Fisheries Board of Canada, 21(5), 1183-1226.

Burggren, W. W., & Randall, D. J. (1978). Oxygen uptake and transport during hypoxic exposure in the sturgeon Acipenser transmontanus. Respiration Physiology, 34(2),171-183.

Chang, Y. J., Jeong, M. H., Min, B. H., Neill, W. H., & Fontaine, L. P. (2005). Effects of photoperiod, temperature, and fish size on oxygen consumption in the black porgy Acanthopagrus schlegeli. Fisheries and Aquatic Sciences, 8(3), 142-150.

Cindelaras, S., Prasetio, A. B., & Kusrini, E. (2015). Embryonic and early larvae development of wild betta (Betta imbellis Ladiges 1975). Widyariset, 1(1), 1-10.

Cook, D. G., & Herbert, N. A. (2012). The physiological and behavioural response of juvenile kingfish (Seriola lalandi) differs between escapable and inescapable progressive hypoxia. Journal of Experimental Marine Biology and Ecology, 413, 138-144.

Cruz-Neto, A.P., & Steffensen, J. F. (1997). The effects of acute hypoxia and hypercapnia on oxygen consumption of the freshwater European eel. Journal of Fish Biology, 50,759-769.

Dalla Valle, A. Z., Rivas‐Diaz, R., & Claireaux, G. (2003). Opercular differential pressure as a predictor of metabolic oxygen demand in the starry flounder. Journal of Fish Biology, 63(6), 1578-1588.

De las Heras, V., Martos-Sitcha, J. A., Yúfera, M., Mancera, J. M., & Martínez-Rodríguez, G. (2015). Influence of stocking density on growth, metabolism and stress of thick-lipped grey mullet (Chelon labrosus) juveniles. Aquaculture, 448, 29-37.

Diatin, I., Suprayudi, M. A., Budiardi, T., & Surawidjaja, E. H. (2015). Intensive culture of corydoras ornamental fish (Corydoras aeneus): evaluation of stocking density and water exchange. AACL Bioflux, 8(6), 975-987.

Domenici, P., Herbert, N. A., Lefrançois, C., Steffensen, J. F., & McKenzie, D. J. (2013). The effect of hypoxia on fish swimming performance and behaviour. In Swimming Physiology of Fish (pp. 129-159). Berlin, Heidelberg: Springer.

Faizul, M. I. M., & Christianus, A. (2013). Salinity and stocking density effect on growth and survival of Barbodes gonionotus (Bleeker, 1850) fry. Journal of Fisheries and Aquatic Science, 8(2), 419-424.

Faturrohman, K. (2017). Penentuan kadar oksigen terlarut optimum untuk pertumbuhan benih kepiting bakau Scylla serrata dalam sistem resirkulasi. [Tesis]. Bogor (ID): Institut Pertanian Bogor.

García-Trejo, J. F., Peña-Herrejon, G. A., Soto-Zarazúa, G. M., Mercado-Luna, A., Alatorre-Jácome, O., & Rico-García, E. (2016). Effect of stocking density on growth performance and oxygen consumption of Nile tilapia (Oreochromis niloticus) under greenhouse conditions. Latin American Journal of Aquatic Research, 44(1), 177-183.

Hayuningtyas, E. P., & Kusrini, E. (2016). Performa pertumbuhan ikan cupang alam (Betta imbellis) yang diberi hormon pertumbuhan rekombinan melalui perendaman dan pakan alami. Media Akuakultur, 11(2), 87-95.

Hepher, B., & Pruginin, Y. (1981). Commercial fish farming with special reference to fish culture in Israel. John Wiley and Sons, New York.

Herbert, N. A.,& Steffensen, J. F. (2005). The response of Atlantic cod, Gadus morhua, to progressive hypoxia: fish swimming speed and physiological stress. Marine Biology, 147(6), 1403-1412.

Hui, T. H., & Ng, P. K. (2005). The labyrinth fishes (Teleostei: Anabantoidei, Channoidei) of Sumatra, Indonesia. The Raffles Bulletin of Zoology, 13, 115-138.

Iswantari, A., Kurniawan, K., Priadi, B., Prakoso, V. A., & Kristanto, A. H. (2019). Konsumsi oksigen ikan uceng Nemacheilus fasciatus (Valenciennes, 1846) pada kondisi padat tebar yang berbeda. Oseanologi dan Limnologi di Indonesia, 4(2), 79-87.

Itazawa, Y., Matsumoto, T., & Kanda, T. (1978). Group effects on physiological and ecological phenomena in fish, 1: Group effect on the oxygen consumption of the rainbow trout and the medaka. Bulletin of the Japanese Society of Scientific Fisheries, 44(9), 965-969 (in Japanese).

Jeong, M. H., Kim, Y. S., Min, B. H., & Chang, Y. J. (2007). Effect of fish number in respiratory chamber on routine oxygen consumption of black porgy Acanthopagrus schlegeli reared in seawater or freshwater. Journal of Aquaculture, 20(2), 121-126.

Jobling, M. (1993). Bioenergetics: feed intake and energy partitioning. In J. C. Rankin & F. B. Jensen (Eds.),Fish Ecophysiology, Fish and Fisheries Series 9 (pp. 16-28). London, England: Chapman & Hall.

Jobling, M. (1994). Fish Bioenergetics. London, England: Chapman & Hall.

Jorgensen, E. H., Christiansen, J. S., & Jobling, M. (1993). Effects of stocking density on food intake, growth performance and oxygen consumption in Arctic charr (Salvelinus alpinus). Aquaculture, 110(2), 191-204.

Kadarini, T., Sholichah, L., & Gladiyakto, M. (2010). Pengaruh padat penebaran terhadap sintasan dan pertumbuhan benih ikan hias silver dolar (Metynnis hypsauchen) dalam sistem resirkulasi. Prosiding Forum Inovasi Teknologi Akuakultur 2010 (pp. 409-416). Jakarta: Pusat Penelitian dan Pengembangan Perikanan Budidaya.

Kawamoto, N. (1977). Fish Physiology.Tokyo, Japan: Koseisha-Koseikaku (in Japanese).

Koolhaas, J. M., Korte, S. M., De Boer, S. F., Van Der Vegt, B. J., Van Reenen, C. G., Hopster, H., De Jong, I. C., Ruis, M. A. W.,& Blokhuis, H. J. (1999). Coping styles in animals: current status in behavior and stress-physiology. Neuroscience & Biobehavioral Reviews, 23(7), 925-935.

Kulkarni, A. C., Kuppusamy, P., & Parinandi, N. (2007). Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy. Antioxidants & Redox Signaling, 9(10), 1717-1730.

Kusrini, E., Alimuddin, Zairin, M., & Sulistyowati, D. T. (2016). Gene transfer on Betta imbellis through transfection method with different DNA concentration. Indonesian Aquaculture Journal, 11(1), 1-7.

Kusrini, E., Alimuddin, Zairin, M., & Sulistyowati, D. T. (2018). Foreign growth hormone gene transmission and expression in F1 transgenic betta fish (Betta imbellis). Pakistan Journal of Biotechnology, 15(1), 1-9.

Laidley, C. W., & Leatherland, J. F. (1988). Cohort sampling, anaesthesia and stocking‐density effects on plasma cortisol, thyroid hormone, metabolite and ion levels in rainbow trout, Salmo gairdneri Richardson. Journal of Fish Biology, 33(1), 73-88.

Laiz-Carrión, R., Viana, I. R., Cejas, J. R., Ruiz-Jarabo, I., Jerez, S., Martos, J. A., ... & Mancera, J. M. (2012). Influence of food deprivation and high stocking density on energetic metabolism and stress response in red porgy, Pagrus pagrus L. Aquaculture International, 20(3), 585-599.

Laursen, D. C., Silva, P. I., Larsen, B. K., & Höglund, E. (2013). High oxygen consumption rates and scale loss indicate elevated aggressive behaviour at low rearing density, while elevated brain serotonergic activity suggests chronic stress at high rearing densities in farmed rainbow trout. Physiology & Behavior, 122, 147-154.

Lays, N., Iversen, M. M. T., Frantzen, M., & Jørgensen, E. H. (2009). Physiological stress responses in spotted wolffish (Anarhichas minor) subjected to acute disturbance and progressive hypoxia. Aquaculture, 295(1-2), 126-133.

Lefevre, S., Wang, T., Phuong, N. T., & Bayley, M. (2011). Hypoxia tolerance and partitioning of bimodal respiration in the striped catfish (Pangasianodon hypophthalmus). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 158(2), 207-214.

Lefevre, S., Phuong, N. T., Wang, T., & Bayley, M. (2012). Effects of hypoxia on the partitioning of oxygen uptake and the rise in metabolism during digestion in the air-breathing fish Channa striata. Aquaculture, 364, 137-142.

Magnoni, L. J., Eding, E., Leguen, I., Prunet, P., Geurden, I., Ozório, R. O., & Schrama, J. W. (2018). Hypoxia, but not an electrolyte-imbalanced diet, reduces feed intake, growth and oxygen consumption in rainbow trout (Oncorhynchus mykiss). Scientific Reports, 8(1), 4965.

Mamun, S. M., Focken, U., & Becker. K. (2013). A respirometer system to measure critical and recovery oxygen tensions of fish under simulated diurnal fluctuations in dissolved oxygen. Aquaculture International, 21, 31-44.

Millán-Cubillo, A. F., Martos-Sitcha, J. A., Ruiz-Jarabo, I., Cárdenas, S., & Mancera, J. M. (2016). Low stocking density negatively affects growth, metabolism and stress pathways in juvenile specimens of meagre (Argyrosomus regius, Asso 1801). Aquaculture, 451, 87-92.

Mishrigi, S., & Kubo, T. (1978). Effects of territoriality on oxygen consumption in Tilapia nilotica. Bulletin of the Faculty of Fisheries Hokkaido University, 29(4), 308-312.

Morgan, J. D., & Iwama, G. K. (2011). Measurements of stressed states in the field. In G. K. Iwama, A. D. Pickering, J. P. Sumpter & C. B. Schreck (Eds.), Fish Stress and Health in Aquaculture(pp. 247-270). Cambridge: Cambridge University Press.

Murniasih, S., Cindelaras, S., Rahmawati, R., & Kusrini, E. (2012). Pemijahan dan pemeliharaan larva ikan wild betta (Betta imbellis). In Haryanti, Rachmansyah, K.Sugama, A. Parenrengi, A. Sudradjat, Imron, A. Sunarto, G. S. Sumiarsa, Z. I. Azwar & A. H. Kristanto (Eds.), Prosiding Forum Inovasi Teknologi Akuakultur 2012 (pp. 343-349). Jakarta: Pusat Penelitian dan Pengembangan Perikanan Budidaya.

Ni, M., Wen, H., Li, J., Chi, M., Bu, Y., Ren, Y., Zhang, M., Song, Z., & Ding, H. (2014). The physiological performance and immune responses of juvenile Amur sturgeon (Acipenser schrenckii) to stocking density and hypoxia stress. Fish & Shellfish Immunology, 36(2), 325-335.

Ott, M. E., Heisler, N.,& Ultsch, G. R. (1980). A re-evaluation of the relationship between temperature and the critical oxygen tension in freshwater fishes. Comparative Biochemistry and Physiology Part A: Physiology, 67(3), 337-340.

Overli, O., Sørensen, C., Pulman, K. G., Pottinger, T. G., Korzan, W., Summers, C. H., & Nilsson, G. E. (2007). Evolutionary background for stress-coping styles: relationships between physiological, behavioral, and cognitive traits in non-mammalian vertebrates. Neuroscience & Biobehavioral Reviews, 31(3), 396-412.

Perry, S. F., Jonz, M. G., & Gilmour, K. M. (2009). Chapter 5. Oxygen sensing and the hypoxic ventilatory response. In J. G. Richards, A. P. Farrell, & C. J. Brauner (Eds.), Fish Physiology. Vol. 27: Hypoxia (pp. 193-253). New York, United States: Academic Press.

Petersen, L. H., & Gamperl, A. K. (2010). Effect of acute and chronic hypoxia on the swimming performance, metabolic capacity and cardiac function of Atlantic cod (Gadus morhua). Journal of Experimental Biology, 213(5), 808-819.

Pichavant, K., Person-Le-Ruyet, J., Le Bayon, N., Severe, A., Le Roux A., Quemener, L., Maxime, V., Nonnotte, G., & Boeuf, G. (2000). Effects of hypoxia on growth and metabolism of juvenile turbot. Aquaculture, 188(1-2), 103-114.

Pichavant, K., Person‐Le‐Ruyet, J., Bayon, N. L., Severe, A., Roux, A. L., & Boeuf, G. (2001). Comparative effects of long‐term hypoxia on growth, feeding and oxygen consumption in juvenile turbot and European sea bass. Journal of Fish Biology, 59(4), 875-883.

Pörtner, H. O., Heisler, N., & Grieshaber, M. K. (1985). Oxygen consumption and mode of energy production in the intertidal worm Sipunculus nudus L.: definition and characterization of the critical PO2 for an oxyconformer. Respiration Physiology, 59(3), 361-377.

Prakoso, V. A., Kim, K. T., Min, B. H., Gustiano, R., & Chang, Y. J. (2016). Lethal dissolved oxygen and blood properties of grey mullets Mugil Cephalus in seawater and freshwater. Berita Biologi, 15(1), 89-94.

Prakoso, V. A.,& Chang, Y. J. (2018). Effects of hypoxia on oxygen consumption of tilapia fingerlings (Oreochromis niloticus). Oseanologi dan Limnologi di Indonesia, 3(2), 165-171.

Prakoso V. A, Sinansari, S., & Kristanto, A. H. (2019a). Oxygen consumption and blood glucose level of Asian redtail catfish (Hemibagrus nemurus) fingerlings exposed to hypoxia. In Aunurohim, W. Muslihatin, I. Desmawati, N. N. Sa’adah, M. A. P. Utomo, N. H. Alami, F. K. Muzaki, N. M. Ashuri & T. B. Saputro (Eds.), The Proceeding of 4th International Biology Conference – 2018: Exploring gene to ecosystem for human welfare (pp. 54-59). Surabaya: Biology Department, Faculty of Science, Institut Teknologi Sepuluh Nopember.

Prakoso, V. A., Pouil, S., Prabowo, M. N. I., Sundari, S., Arifin, O. Z., Subagja, J., Affandi, R., Kristanto, A. H., & Slembrouck, J. (2019b). Effects of temperature on the zootechnical performances and physiology of giant gourami (Osphronemus goramy) larvae. Aquaculture, 510, 160-168.

Prasetio, A. B., Kusrini, E., Kusumah, R. V., Cindelaras, S., & Murniasih, S. (2013). Efektivitas metode transfeksi dalam transfer gen pada zigot ikan cupang alam (wild betta), Betta imbellis. Jurnal Riset Akuakultur, 8(2), 191-199.

Prihadi, T. H., Saputra, A., Huwoyon, G. H., & Pantjara, B. (2018). Pengaruh kepadatan terhadap sintasan, pertumbuhan, dan gambaran darah benih ikan betutu Oxyeleotris marmorata. Jurnal Riset Akuakultur, 12(4), 341-350.

Priyadi, A., Ginanjar, R., Permana, A., & Slembrouck, J. (2010). Tingkat densitas larva botia (Chromobotia macracanthus) dalam satuan volume air pada akuarium resirkulasi. Prosiding Forum Inovasi Teknologi Akuakultur 2010 (pp. 439-446). Jakarta: Pusat Penelitian dan Pengembangan Perikanan Budidaya.

Rahmawati, R., & Kusrini, E. (2016). Optimasi suhu pemeliharaan terhadap pertumbuhan larva ikan cupang, Betta imbellis. In K. Sugama, Wijopriono, I. N. A. Giri, Rachmansyah, Haryanti, Alimuddin, I. N. Radiarta, S. Juwana & D. E. D. Setiono (Eds.), Prosiding Forum Inovasi Teknologi Akuakultur 2016 (pp. 385-391). Jakarta: Pusat Penelitian dan Pengembangan Perikanan Budidaya.

Randall, D. (1982). The control of respiration and circulation in fish during exercise and hypoxia. Journal of Experimental Biology, 100(1),275-288.

Rees, B. B., Boily, P., & Williamson, L. A. C. (2009). Exercise- and hypoxia-induced anaerobic metabolism and recovery: a student laboratory exercise using teleost fish. Advances in Physiology Education, 33(1), 72-77.

Ren, Y., Wen, H., Li, Y., Li, J., He, F., & Ni, M. (2017). Effects of stocking density on lipid deposition and expression of lipid-related genes in Amur sturgeon (Acipenser schrenckii). Fish Physiology and Biochemistry, 43(6), 1707-1720.

Richards, J. G. (2011). Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia. Journal of Experimental Biology, 214(2),191-199.

Rombough, P. J. (1988). Growth, aerobic metabolism, and dissolved oxygen requirements of embryos and alevins of steelhead, Salmo gairdneri. Canadian Journal of Zoology, 66(3), 651-660.

Ruane, N. M., Carballo, E. C., & Komen, J. (2002). Increased stocking density influences the acute physiological stress response of common carp Cyprinus carpio (L.). Aquaculture Research, 33(10), 777-784.

Ruer, P. M., Cech Jr, J. J., & Doroshov, S. I. (1987). Routine metabolism of the white sturgeon, Acipenser transmontanus: effect of population density and hypoxia. Aquaculture, 62(1), 45-52.

Sadoul, B., & Geffroy, B. (2019). Measuring cortisol, the major stress hormone in fishes. Journal of Fish Biology, 94(4), 540-555.

Salas-Leiton, E., Anguis, V., Manchado, M., & Canavate, J. P. (2008). Growth, feeding and oxygen consumption of Senegalese sole (Solea senegalensis) juveniles stocked at different densities. Aquaculture, 285(1-4), 84-89.

Schreck, C. B., & Tort, L. (2016). The concept of stress in fish. In Fish physiology (Vol. 35, pp. 1-34). Academic Press.

Schurmann, H., & Steffensen, J. F. (1997). Effects of temperature, hypoxia and activity on the metabolism of juvenile Atlantic cod. Journal of Fish Biology, 50(6), 1166-1180.

Subagja, J., & Radona, D. (2017). Produktivitas pascalarva ikan semah Tor douronensis (Valenciennes, 1842) pada lingkungan ex situ dengan padat tebar berbeda. Jurnal Riset Akuakultur, 12(1), 41-48.

Subagja, J., Prakoso, V. A., Arifin, O. Z., & Kristanto, A. H. (2019). Pengaruh perbedaan padat tebar larva terhadap pertumbuhan dan sintasan pada ikan uceng (Nemacheilus fasciatus). Berita Biologi, 18(2), 209-214.

Suresh, A. V., & Lin, C. K. (1992). Effect of stocking density on water quality and production of red tilapia in a recirculated water system. Aquacultural Engineering, 11(1),1-22.

Svendsen, J. C., Steffensen, J. F., Aarestrup, K., Frisk, M., Etzerodt, A., & Jyde, M. (2012). Excess posthypoxic oxygen consumption in rainbow trout (Oncorhynchus mykiss): recovery in normoxia and hypoxia. Canadian Journal of Zoology, 90(1),1-11.

Szczepkowski, M., Szczepkowska, B., & Piotrowska, I. (2011). Impact of higher stocking density of juvenile Atlantic sturgeon, Acipenser oxyrinchus Mitchill, on fish growth, oxygen consumption, and ammonia excretion. Archives of Polish Fisheries, 19(2), 59-67.

Tripathi, R. K., Mohindra, V., Singh, A., Kumar, R., Mishra, R. M., & Jena, J. K. (2013). Physiological responses to acute experimental hypoxia in the air-breathing Indian catfish, Clarias batrachus (Linnaeus, 1758). Journal of Biosciences, 38(2), 373-383.

Tzaneva, V., Bailey, S., & Perry, S. F. (2011). The interactive effects of hypoxemia, hyperoxia, and temperature on the gill morphology of goldfish (Carassius auratus). American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 300(6),344-1351.

Umezawa, S. I., Adachi, S., & Taneda, K. (1983). Group effect on oxygen consumption of the ayu (Plecoglossus altivelis) in relation to growth stage. Japanese Journal of Ichthyology, 30(3), 261-267.

van de Nieuwegiessen, P. G., Boerlage, A. S., Verreth, J. A., & Schrama, J. W. (2008). Assessing the effects of a chronic stressor, stocking density, on welfare indicators of juvenile African catfish, Clarias gariepinus Burchell. Applied Animal Behaviour Science, 115(3-4), 233-243.

Wahyu, Supriyono E., Nirmala K., & Enang H. (2015). Pengaruh kepadatan ikan selama pengangkutan terhadap gambaran darah, pH darah dan kelangsungan benih ikan gabus Channa striata (Bloch, 1793). Jurnal Ikhtiologi Indonesia, 15(2),165-177.

Wares, W. D., & Igram, R.(1979). Oxygen consumption in the fathead minnow (Pimephales promelas Rafinesque)-I: Effects of weight, temperature, group size, oxygen level and opercular movement rate as a function of temperature. Comparative Biochemistry and Physiology Part A: Physiology, 62(2), 351-356.

Watkins, D., Cooperstein, S. J., &Lazarow, A. (2008). Effect of alloxan on permeability of pancreatic islet tissue in vitro. American Journal of Physiology,207(2), 436-440.

Wedemeyer, G. A., Barton, B. B., & McLeay, D. J. (1990). Stress and acclimation. In C. B. Schreck, & P.B. Moyle (Eds.),Methods for Fish Biology(pp. 451-489). Bethesda, MD: American Fisheries Society.

Wendelaar Bonga, S. E. (1997). The stress response in fish. Physiological reviews, 77(3), 591-625.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Powered by OJS | Design by ThemeOJS