Distribusi dan Kelimpahan Kista Pyrodinium bahamense di Perairan Rawan Marak Alga Berbahaya di Indonesia

Arief Rachman, Mariana D. B. Intan, Hikmah Thoha, Oksto Ridho Sianturi, Estelle Masseret

Abstract


Distribution and abundance of Pyrodinium bahamense cyst in the harmful algal blooms risk waters in Indonesia. Pyrodinium bahamenseas Harmful Algal Blooms (HABs) is one of the rising environmental problems in the coastal areas of Southeast Asia, particularly in Indonesia. Cyst bank formed after the blooms of P. bahamense is a potential source for the future blooming events. Therefore, an effort to describe the distribution and abundance of P. bahamense cyst banks in Indonesian coastal waters is necessary as a part of the mitigation strategy against the negative impacts of those toxic dinoflagellate blooms. This study was done as a desk study, which included a literature study, reanalysed of previous research data, and reanalysed of preserved samples or stored raw samples. Data and samples used in this study were collected and analysed from part of past researches in Lampung Bay, Jakarta Bay, Cirebon coastal waters, and Ambon Bay. This study also included an analysis to determine the P. Bahamense HABs risk level in the studied areas based on the cyst density and distribution data. Results showed a low density of P. bahamense cyst in Lampung Bay and Jakarta Bay, with cyst density <50 cysts.g-1 wet sediment. In contrast, the bottom sediments of Ambon Bay and Cirebon coastal waters contained high cyst density, which reached >1,000 cysts.g-1 wet sediment. Based on those data, the P. Bahamense HABs risk in Jakarta Bay and Lampung Bay would be generally much lower compared to Ambon Bay and Cirebon waters. The existence of cyst banks in those coastal waters may indicate  a possibility of future blooms of P. bahamense.



Keywords


Harmful Algal Blooms, cyst bank, Pyrodinium bahamense, toxic dinoflagellate.

References


Anderson, D. M. (1989). Cysts as factors in Pyrodinium bahamense ecology. In G. M. Hallegraeff and J. L. Maclean (Eds) Biology, Epidemiology and Management of Pyrodinium Red Tides Vol. 21 (pp. 81-88). Bandar Seri Begawan, Brunei Darussalam: Fisheries Department, Ministry of Development, Brunei Darussalam and International Center for Living Aquatic Resource Management, Manila, Philippines.

Azanza, R. V., & Max Taylor, F. J. R. (2001). Are Pyrodinium Blooms in the Southeast Asian Region Recurring and Spreading? A View at the End of the Millennium. AMBIO: A Journal of the Human Environment, 30(6), 356-364, 359.

Azanza, R. V., Siringan, F. P., Diego Mcglone, M. L. S., Yñiguez, A. T., Macalalad, N. H., Zamora, P. B., Agustin, M. B. and Matsuoka, K.(2004). Horizontal dinoflagellate cyst distribution, sediment characteristics and benthic flux in Manila Bay, Philippines. Phycological Research, 52(4), 376-386.

Blanco, J. (1986). Separacion de quistes de dinoflagelados en gradiente de densidad. Boletin del Instituto Espanol de Oceanografia, 3, 81-84.

Brosnahan, M. L., Fischer, A. D., Lopez, C. B., Moore, S. K., & Anderson, D. M. (2020). Cyst-forming dinoflagellates in a warming climate. Harmful Algae, 91, 101728. https://doi.org/10.1016/j.hal.2019.101728

Corrales, R. A., & Maclean, J. L. (1995). Impacts of harmful algae on seafarming in the Asia-Pacific areas. Journal of Applied Phycology, 7(2), 151-162. https://doi.org/10.1007/BF00693062

Dale, B., Thorsen, T. A., & Fjellsa, A. (1999). Dinoflagellate Cysts as Indicators of Cultural Eutrophication in the Oslofjord, Norway. Estuarine, Coastal and Shelf Science, 48(3), 371-382. https://doi.org/10.1006/ecss.1999.0427

Damar, A., Colijn, F., Hesse, K.-J., & Wardiatno, Y. (2012). The eutrophication states of Jakarta, Lampung and Semangka Bays: Nutrient and phytoplankton dynamics in Indonesian tropical waters. Journal of Tropical Biology & Conservation, 9(1), 61-81.

Damar, A., Hesse, K.-J., Colijn, F., & Vitner, Y. (2019). The eutrophication states of the Indonesian sea large marine ecosystem: Jakarta Bay, 2001–2013. Deep Sea Research Part II: Topical Studies in Oceanography, 163, 72-86. https://doi.org/10.1016/j.dsr2.2019.05.012.

Duarte, C., Conley, D., Carstensen, J., & Sánchez-Camacho, M. (2009). Return to Neverland : Shifting Baselines Affect Eutrophication Restoration Targets. Journal of the Coastal and Estuarine Research Federation, 32(1), 29-36. d https://doi.org/10.1007/s12237-008-9111-2.

Furio, E. F., Azanza, R. V., Fukuyo, Y., & Matsuoka, K. (2012). Review of geographical distribution of dinoflagellate cysts in Southeast Asian coasts. Coastal marine science, 35(1), 20-33.

Genovesi-Giunti, B., Laabir, M., & Vaquer, A. (2006). The benthic resting cyst: a key actor in harmful dinoflagellate blooms-A review. Vie et milieu (1980), 56(4), 327-337.

Genovesi, B., Laabir, M., Masseret, E., Collos, Y., Vaquer, A., & Grzebyk, D. (2009). Dormancy and germination features in resting cysts of Alexandrium tamarense species complex (Dinophyceae) can facilitate bloom formation in a shallow lagoon (Thau, southern France). Journal of Plankton Research, 31(10), 1209-1224. https://doi.org/10.1093/plankt/fbp066.

Kim, S.-Y., Moon, C.-H., Cho, H.-J., & Lim, D.-I. (2009). Dinoflagellate Cysts in Coastal Sediments as Indicators of Eutrophication: A Case of Gwangyang Bay, South Sea of Korea. Estuaries and Coasts, 32(6), 1225-1233. https://doi.org/10.1007/s12237-009-9212-6.

LeGresley, M., & McDermott, G. (2010). Counting chamber methods for quantitative phytoplankton analysis—haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. In B. Karlson, C. Cusack, & E. Bresnan (Eds.), Microscopic and molecular methods for quantitative phytoplankton analysis. UNESCO (IOC Manuals and Guides) (Vol. 110, pp. 25-30). Spain: Intergovernmental Oceanographic Commission, United Nations Educational, Scientific and Cultural Organization.

Likumahua, S. (2015). Recent blooming of Pyrodinium bahamense var. compressum in Ambon Bay, Eastern Indonesia. Marine Research in Indonesia, 38(1), 31-37.

Matsuoka, K. (1989). Morphological features of the cyst of Pyrodinium bahamense var. compressum. In G. M. Hallegraeff and J. L. Maclean (Eds) ICLARM Conference. Vol. 21 (pp. 219-229). Bandar Seri Begawan, Brunei Darussalam: Fisheries Department, Ministry of Development, Brunei Darussalam and International Center for Living Aquatic Resource Management, Manila, Philippines.

Matsuoka, K., Fukuyo, Y., P Praseno, D., Adnan, Q., & Kodama, M. A. (1999). Dinoflagellate cysts in surface sediments of Jakarta Bay, off Ujung Pandang and Larantuka of Flores Islands, Indonesia with special reference of Pyrodinium bahamense. Bull. Fac. Fish. Nagasaki Univ, 80, 49-54.

McMinn, A. (1991). Recent dinoflagellate cysts from estuaries on the central coast of New South Wales, Australia. Micropaleontology, 37(3), 269-287.

Mizushima, K., Matsuoka, K., & Fukuyo, Y. (2007). Vertical distribution of Pyrodinium bahamense var. compressum (Dinophyceae) cysts in Ambon Bay and Hurun Bay, Indonesia. Plankton and Benthos Research, 2(4), 163-174.

Morquecho, L., Alonso-Rodríguez, R., & Martínez-Tecuapacho, G. A. (2014). Cyst morphology, germination characteristics, and potential toxicity of Pyrodinium bahamense in the Gulf of California. Botanica Marina, 57(4), 303. https://doi.org/10.1515/bot-2013-0121.

Nurlina, A., & Liambo, A. A. (2018). Kejadian Luar Biasa Paralytic Shellfish Poisoning Pada Konsumsi Kerang Hijau Terkontaminasi Saxitoxin di Kabupaten Cirebon, Indonesia, Desember 2016. Prosiding Seminar Nasional dan Diseminasi Penelitian Kesehatan. Vol. 1. (pp. 134-141)

Tasikmalaya, Indonesia: STIKes Bakti Tunas Husada, Tasikmalaya.

Praseno, D., Fukuyo, Y., Widiarti, R., & Sugestiningsih. (2003). Red tide occurrences in Indonesian waters and the need to establish a monitoring system. Paper presented at the Proceedings of Workshop on Red tide Monitoring in Asian Coastal Waters.

Rachman, A., Thoha, H., Sianturi, O. R., Bayu, M. D., Fitriya, N., Sidabutar, T., Witasari, Y., Wibowo, S. P. A. & Iwataki, M. (2019). Distribution of Pyrodinium bahamense cysts in modern sediments of Sukalila water, Cirebon, Indonesia. Philippine Journal of Natural Sciences, 24(1 & 2), 104 - 115.

Satta, C. T., Anglès, S., Lugliè, A., Guillén, J., Sechi, N., Camp, J., & Garcés, E. (2013). Studies on dinoflagellate cyst assemblages in two estuarine Mediterranean bays: A useful tool for the discovery and mapping of harmful algal species. Harmful Algae, 24, 65-79. https://doi.org/10.1016/j.hal.2013.01.007.

Sidabutar, T., Thoha, H., Bayu D., M., Rachman, A., Sianturi, O. R., Fitriya, N., Muawanah, Mulyadi, H. A., Likumahua, S. & Masseret, E. (2016). Occurrence of Pyrodinium bahamense blooms related to cyst accumulation in the bottom sediments in the bays at Ambon, Lampung and Jakarta, Indonesia. Harmful Algae News, 52, 8-9.

Siringan, F. P., Azanza, R. V., Macalalad, N. J. H., Zamora, P. B., & Sta. Maria, M. Y. Y. (2008). Temporal changes in the cyst densities of Pyrodinium bahamense var. compressum and other dinoflagellates in Manila Bay, Philippines. Harmful Algae, 7(4), 523-531. https://doi.org/10.1016/j.hal.2007.11.003.

Thoha, H., Muawanah, M., Bayu Intan, M., Rachman, A., Sianturi, O. R., Sidabutar, T., Iwataki, M., Takahashi, K., Avarre, J.-C. & Masseret, E.(2019). Resting cyst distribution and molecular identification of the harmful dinoflagellate Margalefidinium polykrikoides (Gymnodiniales, Dinophyceae) in Lampung Bay, Sumatra, Indonesia. Frontiers in microbiology, 10, 1-12.

Tian, C., Doblin, M. A., Dafforn, K. A., Johnston, E. L., Pei, H., & Hu, W. (2018). Dinoflagellate cyst abundance is positively correlated to sediment organic carbon in Sydney Harbour and Botany Bay, NSW, Australia. Environmental Science and Pollution Research, 25(6), 5808-5821. https://doi.org/10.1007/s11356-017-0886-1.

Usup, G., Ahmad, A., Matsuoka, K., Lim, P. T., & Leaw, C. P. (2012). Biology, ecology and bloom dynamics of the toxic marine dinoflagellate Pyrodinium bahamense. Harmful Algae, 14, 301-312.

Usup, G., Kulis, D. M., & Anderson, D. M. (1994). Growth and toxin production of the toxic dinoflagellate Pyrodinium bahamense var. compressum in laboratory cultures. Natural toxins, 2(5), 254-262.

Villanoy, C. L., Azanza, R. V., Altemerano, A., & Casil, A. L. (2006). Attempts to model the bloom dynamics of Pyrodinium, a tropical toxic dinoflagellate. Harmful Algae, 5(2), 156-183. https://doi.org/10.1016/j.hal.2005.07.001.

Wiadnyana, N., & Sidabutar, T. (1997). Monitoring of harmful Dinoflagellates in the east Indonesian waters. Paper presented at the Proc. ASEAN-Canada Technical Conference on Marine Science: Quality Criteria and Monitoring for Aquatic Life and Human Health Protection.

Wiadnyana, N., Sidabutar, T., Matsuoka, K., Ochi, T., Kodama, M., & Fukuyo, Y. (1996). Note on the occurrence of Pyrodinium bahamense in eastern Indonesian waters. Harmful and Toxic Algal Blooms., 53-56.

Xiao, W., Liu, X., Irwin, A. J., Laws, E. A., Wang, L., Chen, B., Zeng, Y. & Huang, B.(2018). Warming and eutrophication combine to restructure diatoms and dinoflagellates. Water Research, 128, 206-216.

Yang, C.-S., Kao, S.-P., Lee, F.-B., & Hung, P.-S. (2004). Twelve different interpolation methods: A case study of Surfer 8.0. ISPRS, 778-783.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Powered by OJS | Design by ThemeOJS