Bioakumulasi Merkuri (Hg) pada Lamun Enhalus acoroides dan Mangrove Rhizophora apiculata di Pulau Pari, Kepulauan Seribu

Anna Rejeki Simbolon, Triyoni Purbonegoro

Abstract


Bioaccumulation of Mercury (Hg) in Seagrass Enhalus acoroides and Mangrove Rhizophora apiculata in Pari Island, Seribu Islands.  Heavy metal pollution, especially Hg metal in Jakarta Bay, is feared to have a negative impact on the quality of the waters around the Jakarta Bay waters, one of which is Pari Island in the Thousand Islands. Seagrass and mangroves plants distributed surrounding Pari Island can be used as indicators of heavy metal pollution. The value of bioaccumulation and translocation of Hg metal factors will provide an overview of the ability of plants to accumulate heavy metals in their surroundings. This study aims to determine the bioaccumulation and translocation of the heavy metal Hg factor in Enhalus acoroides seagrass and Rhizophora apiculata mangroves on Pari Island, Seribu Islands. Seagrass and mangrove samples were taken at five sampling points through purposive sampling. The bioaccumulation value was calculated using the ratio of the metal concentrations in each part of the plant body and sediment. Meanwhile, the translocation factor value was calculated by the ratio of Hg concentration in each part of the plant body (roots/rhizomes, stems, and leaves). The results of this study indicate that the bioaccumulation value in seagrass is infinite (bioaccumulation factor, BAF=∞) and in mangroves is 1.57 (BAF>1). The highest translocation factor value in seagrass leaves is 3.86 (translocation factor, TF) >1) and in mangrove leaves is 2.84 (TF>1). This study shows that seagrass and mangrove plants are classified as good bio accumulator and hyperaccumulator plants and accumulate heavy metals, especially Hg in the upper part of their bodies, namely leaves



Keywords


Heavy metals, Hg, BAF, TF, Pari Island

References


Ahmad, F., Azman, S., Said, M. I. M., Baloo, L. (2015a). Tropical seagrass as a bioindicator of metal accumulation. Sains Malaysiana, 44(2), 203-210.

Ahmad, F., Azman, S., Said, M. I. M., Baloo, L. (2015b). Biomonitoring of metal contamination in estuarine ecosystem using seagrass. Journal of Environmental Health Science Engineering, 13, 1-4.

Alloway, B. J., & Ayres, D. C. (1995). Chemical Principle of Environmental Pollution. 2nd Edition. London: Blackie Academic and Professional, Chapman & Hall.

Analuddin, K., Sharma, S., Jamili., Septiana. A., Rianse, U., Nadaoka, K. (2017). Heavy metal bioaccumulation in mangrove ecosystem at the coral triangle ecoregion, Southeast Sulawesi, Indonesia. Marine Pollution Bulletin, 125(1-2), 472-480.

[ANZECC] Australian and New Zealand Environment and Conservation Council, [ARMCANZ] Agriculture and Resource Management Council of Australia and New Zealand. (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Volume 1. Canberra: Australian and New Zealand Environment and Conservation Council.

Baker, A. J. (1981). Accumulators and excluders-strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3(1), 643-654.

Bonanno, G., & Di Martino, V. (2016). Seagrass Cymodocea nodoca as a trace element biomonitor: bioaccumulation patterns and biomonitoring uses. Journal of Geochemical Exploration, 169, 43-49.

[BPLHD] Badan Pengelola Lingkungan Hidup Daerah. (2014). Laporan Status Lingkungan Hidup Daerah Provinsi Daerah Khusus Ibukota Jakarta Tahun 2014. Jakarta: BPLHD.

Chaudhuri, P., Nath, B., & Birch, G. (2013). Accumulation of trace metals in grey mangrove Avicennia marina fine nutritive roots: the role of rhizosphere processes. Marine Pollution Bulletin, 79, 284-292.

Cordova, M. R., Eftiah, F. D. M., Zamani, N. P. (2017). Ability of mangrove apple as mercury bioindicator. Omni-Akuatika, 13(2), 137-143.

Davies, C. A., Tomlinson, K., & Stephenson, T. (1991). Heavy metals in river tees estuary sediments. Environmental Technology, 12, 961-972.

Ding, Z., Wu, H., Feng, X., Liu, J., Liu, Y., Yuan, Y., Jiayong, P. (2011). Distribution of Hg in mangrove trees and its implication for Hg enrichment in the mangrove ecosystem. Applied Geochemistry, 26(2), 205- 212.

Fang, T. H., & Chen, R. Y. (2010). Mercury contamination and accumulation in sediments of the East China Sea. Journal of Environmental Sciences, 22(8), 1164-1170.

Hadiwijaya, L., Salim., Ahmad. (2013). Karakteristik pantai gugusan Pulau Pari. Region, 5(1), 1-11.

Heriyanto, N. M., & Subiandono, E. (2011). Penyerapan polutan logam berat (Hg, Pb dan Cu) oleh jenis-jenis mangrove. Jurnal Penelitian Hutan dan Konservasi Alam, 8(2),177-188.

Heriyanto, N. M., & Suharti, S. (2013). Kandungan logam berat dan plankton pada ekosistem tambak bermangrove dan tambak tanpa mangrove (kasus di Tegal Tangkil, Cikiong, Poponcol, dan Kedung Peluk). Jurnal Penelitian Hutan dan Konservasi Alam, 10(2), 121-133.

Huang, J., Hopke, P. K., Choi, H. D., Laing, J.R., Cui, H., Zananski, T. J., Chandrasekaran, S. R., Rattigan, O. V., Holsen, T. M. (2011). Mercury (Hg) emissions from domestic biomass combustion for space heating. Chemosphere, 84, 1694-1699.

Kristanti, R.A., Mursidi., Sarwono. (2007). Kandungan beberapa logam berat pada bakau (Rhizophora apiculata) di Perairan Bontang Selatan, Kalimantan Timur. Jurnal Kehutanan Unmul, 3(2), 185-200.

Larkum, A.W., D. Orth, & C.M. Duarte. (2006). Seagrasses: biology, ecology, and conservation. Dordrecht: Springer.

Llagostera, I., Perez, M., Romero, J. (2011). Trace metal content in the seagrass Cymodocea nodosa: differential accumulation in plant organs. Aquatic Botany, 95, 124-128.

Martuti, N. K. T., Widianarko, B., Yulianto, B. (2016). Copper acumulation on Avicennia marina in Tapak, Tugurejo, Semarang, Indonesia. Waste Technology, 4(1), 40-45.

Mason, R. P., Kim, E. H., Cornwell, J., Heyes, D. (2006). An examination of the factors influencing the flux of mercury, methylmercury and other constituents from estuarine sediment. Marine Chemistry, 102, 1–2.

Natsir, N. A., & Rijal, M. (2020). The quality of Kayeli Bay Waters: Pb and Hg accumulation in water, sediments, and seagrass (Enhalus acoroides) of Buru Island in Maluku. International Journal of Scientific & Technology Research, 9(03), 114-120.

Nadaa, M. S., Nur Taufiq, S. P. J., Sri, R. (2021). Kondisi makrozoobentos (Gastropoda dan Bivalvia) pada ekosistem mangrove, Pulau Pari, Kepulauan Seribu, Jakarta. Buletin Oseanografi Marina, 10(1), 33–41.

Nugraha, A. H., Bengen, D. G., Kawaroe, M. (2017). Physiological response of Thalassia hemprichii on antrophogenic pressure in Pari Island, Seribu Islands, DKI Jakarta. Indonesian Journal of Marine Sciences, 22(1), 40-48.

Poedjirahajoe, E., Mahayani, N. P. D., Sidharta, B. R., & Salamuddin, M. (2013). Tutupan lamun dan kondisi ekosistemnya di kawasan pesisir Madasanger, Jelenga, dan Maluku Kabupaten Sumbawa Barat. Jurnal Ilmu Teknologi Kelautan Tropis, 5(1), 26-46.

Purbonegoro, T., & Suratno. (2020). Health risk assessment related to total mercury (THg) concentration in Clam (Periglypta crispata) from Kepulauan Seribu Regency, Indonesia. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 15(1), 11-17.

[P2O] Pusat Penelitian Oseanografi LIPI. (2016). Keanekaragaman Hayati Laut Pulau Pari dan Pendugaan Stoknya. Laporan Program dan Kegiatan Loka Pengembangan Kompetensi Sumber Daya Manusia Oseanografi. LIPI. Jakarta.

Radulescu, C., Stihi, C., Popescu, I. V., Dulama, I. D., Chelarescu, E. D., Chilian, A. (2013). Heavy metal accumulation and translocation in different parts of Brassicaoleracea L. Romanian Journal of Physics. 58(9), 1337-1354.

Rezvani, M., & Zaefarian, F. (2011). Bioaccumulation and translocation factors of cadmium and lead in Aeluropus littoralis. American Journal of Agricultural Economics, 2(4), 114-119.

Sachoemar, S. I. (2008). Karakteristik lingkungan perairan Kepulauan Seribu. Jurnal Air Indonesia, 4(2), 109-114.

Suratno, & Irawan, A. (2018). Mercury concentration on Enhalus acoroides and Thalassia hemprichii at Seribu Islands. IOP Conference Series: Earth and Environmental Science, 118 (012058), 1-5.

Simbolon, A. R. (2018). Analisis risiko kesehatan pencemaran timbal (Pb) pada kerang hijau (perna viridis) di Perairan Cilincing Pesisir DKI Jakarta. Oseanologi dan Limnologi di Indonesia, 3(3), 197-208.

Simbolon, A. R. (2019). Bioakumulasi kadmium dan merkuri pada kerang hijau, serta analisis multi medium risiko kesehatan di kawasan pemukiman pesisir. Jurnal Riset Akuakultur, 14(2), 119-126.

Subiandono, E., Bismark, M., Heriyanto, N. M. (2013). Kemampuan Avicennia marina (Forsk.) Vierh. dan Rhizophora apiculata Bl. dalam penyerapan polutan logam berat. Jurnal Penelitian Hutan dan Konservasi Alam, 10(1), 93-102.

Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimita Acta, 28(8), 1273-1285.

Tuapattinaya, P. M. J., Rumahlatu, D., Tulalessy, S. (2016). Bioaccumulation of cadmium heavy metal and its effect on the level of chlorophyll and carotenoids of Thalassia hemprichii in the waters of Ambon Island. International Journal of Engineering Science, 6(5), 28-33.

Tupan, C. I, & Azrianingsih, R. (2016). Accumulation of deposition of lead heavy metal in the tissues of root, rhizomes, and leaves of seagrass Thalassia hemprichii (Monocotyledoneae, Hydrocharitaceae). Bioflux, 9(3), 580-589.

Voegborlo, R. B., Matsuyama, A., Adimado, A. A., Akagi, H. (2011). Determination of methylmercury in marine and freshwater fish in Ghana using a combined technique of dithizone extraction and gas–liquid chromatography with electron capture detection. Food Chemistry, 124(3), 1244-1248.

Zamani. N. P., Prartono, T., Arman, A., Ariesta, D. S., & Wahab, I. (2018). Concentration of heavy metals on roots, stem and leaves of Enhalus acoroides, in Tunda Island, Banten bay. Jurnal Ilmu dan Teknologi Kelautan Tropis, 10(3), 769-784


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Powered by OJS | Design by ThemeOJS