Pemodelan Sistem Karbonat di Laut Jawa

Alan Frendy Koropitan


Modeling Carbonate System in the Java Sea. Besides the global fossil fuel burning activities, forest fires in Kalimantan could potentially increase atmospheric CO2 concentrations, impacting air-sea CO2 gas exchange in the Java Sea and changing the balance of the marine carbonate system. This study uses a marine carbonate model to examine the processes that control CO2 flux in the Java Sea and their relationship to CO2 increase in the atmosphere. OCMIP-2 (Ocean Carbon-Cycle Model Intercomparison Model Project, Phase-2) is performed in this marine carbonate model coupled with the marine ecosystem model. The model results show that the quantity of carbon air flux differs during February and October 2000. More considerable flux is produced during February 2000, where the wind speeds are higher than in October 2000. However, the wind speeds have less impact when the CO2 level in the atmosphere rises significantly. Due to the influence of a relatively high surface temperature in the tropical Java sea, the Java Sea functions as a carbon source to the atmosphere in general. In this case, the role of the solubility pump is more significant than that of biological processes in carbon absorption. Moreover, increased CO2 in the atmosphere could alter the partial pressure equilibrium. In the case of 2002 forest fires (atmospheric CO2 = 460 ppm), the carbon source of the Java Sea was less than before forest fires and even became carbon sink when atmospheric CO2 rose to 1135.2 ppm based on the highest SSP scenario in 2100. This modeling also reveals marine acidification issues and could rapidly assess the future changes in marine ecosystems due to CO2 levels rising in the atmosphere.


Marine carbonate model, Java Sea, air-sea carbon flux


Aminah, Krah, C. Y., & Perdinan. (2020). Forest fires and management efforts in Indonesia (a review). IOP Conference Series: Earth and Environmental Science, 504, 012013.

Denman, K. L., & Peña, M. A. (1999). A coupled 1-D biological/physical model of the northeast subartic Pasific Ocean with iron limitation, Deep Sea Research Part II, 46, 2877-2908.

Dickson, A. G., Sabine, C. L., & Christian, J. R. (2007). Guide to best practices for ocean CO2 measurements, PICES Special Publication 3, pp. 191.

Eppley, R. W., Rogers, J. N., & McCarthy, J. J. (1969). Half-Saturation Constants for Uptake of Nitrate and Ammonium by Marine Phytoplankton, Limnology and Oceanography, 14(6), 912-920.

Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S., Aragão, L. O. C., Arneth, A., Arora, V., Bates, N. R., Becker, M., Benoit-Cattin, A., Bittig, H. C., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini, L. P., Evans, W., Florentie, L., Forster, P. M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V., Houghton, R. A., Ilyina, T., Jain, A. K., Joetzjer, E., Kadono, K., Kato, E., Kitidis, V., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland, G., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. I., Pierrot, D., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Smith, A. J. P., Sutton, A. J., Tanhua, T., Tans, P. T., Tian, H., Tilbrook, B., van der Werf, G., Vuichard, N., Walker, A. P., Wanninkhof, R., Watson, A. J., Willis, D., Wiltshire, A. J., Yuan, W., Yue, X., & Zaehle, S. (2020). Global Carbon Budget 2020. Earth System Science Data, 12, 3269–3340.

Goyet, C., Healy, R. J., & Ryan, J., P. (2000). Global distribution of total inorganic carbon and total alkalinity below the deepest winter mixed layer depths. ORNL/CDIAC-127, NDP-076. Carbon Dioxide Information Analysis Center, in Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee.

Gruber, N., Gloor, M., Fletcher, S. E. M., Doney, S. C., Dutkiewicz, S., Follows, M. J., Gerber, M., Jacobson, A. R., Joos, F., Lindsay, K., Menemenlis, D., Mouchet, A., Müller, S. A., Sarmiento, J. L., & T. Takahashi. (2009). Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochemical Cycles, 23, GB1005.

Gruber, N., Clemen, D., Carter, B. R., Feely, R. A., Heuven, S. V., Hoppema, M., Ishii, M., Key, R. M., Kozyr, A., Lauvset, S. K., Monaco, C. L., Mathis, J. T., Murata, A., Olsen, A., Perez, F. F., Sabine, C. L., Tanhua, T., & Wanninkhof, R. (2019). The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science, 363, 1193–1199.

Hamzah, F., Agustiadi, T., Susanto, R. D., Wei, Z., Guo, L., Cao, Z., & Dai, M. (2020). Dynamics of the Carbonate System in the Western Indonmesian Seas During the Southeast Monsoon. Journal of Geophysical Research: Oceans, 125, e2018JC014912.

Hauck, J., Zeising, M., Le Quéré, C., Gruber, N., Bakker, D. C. E., Bopp, L., Chau, T. T. T., Gürses, Ö., Ilyina, T., Landschützer, P., Lenton, A., Resplandy, L., Rödenbeck, C., Schwinger, J., & Séférian, R. (2020). Consistency and Challenges in the Ocean Carbon Sink Estimate for the Global Carbon Budget. Frontiers in Marine Science, 7, 571720.

Hellerman, S., & Rosenstein. M. (1983). Normal monthly wind stress over the world ocean with error estimates, Journal of Physical Oceanography, 13, 1093-1104.

Hirano, T., Segah, H., Limin, S., June, T., Tuah,J. S., Kitso, Hirata, R., & Osaki, M. (2004). The El Nino drought and its consequent peatland fires changed CO2 exchange of a tropical peat swamp forest in Central Kalimantan, Indonesia, in Environmental Conservation and Land Use Management of Wetland Ecosystem in Southeast Asia. Annual Report April 2003 – March 2004. JSPS Core University Program between Hokkaido University, Japan and Research Center for Biology, LIPI-Indonesia.

Huang, T. H., Chen, C. T. A., Tseng, H. C., Lou, J. Y., Wang, S. L., Yang, L., Kandasamy, S., Gao, X., Wang, J. T., Aldrian, E., Jacinto, G. S., Anshari, G. Z., Sompongchaiyakul, P., & Wang, B. J. (2017). Riverine carbon fluxes to the South China Sea. Journal of Geophysical Research: Biogeoscience, 122, 1239–1259.

Huijnen, V., Wooster, M. J., Kaiser, J. W., Gaveau, D. L. A., Flemming, J., Parrington, M., Inness, A., Murdiyarso, D., Main, B., & van Weele, M. (2016). Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Scientific Reports, 6, 26886.

IPCC, 2021. Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu & B. Zhou (eds.)]. Cambridge University Press. In Press.

Ishii, M., Rodgers, K. B., Inoue, H. Y., Toyama, K., Sasano, D., Kosugi, N., Ono, H., Enyo, K., Nakano, T., Iudicone, D., Blanke, B., Aumont, O., & Feely. R. A. (2020). Ocean Acidification From Below in the Tropical Pacific. Global Biogeochemical Cycles, 34(8), 24 e2019GB006368.

Jiang, L.-Q., Carter, B. R., Feely, R.A., Lauvset, S. K., & Olsen, A. (2019). Surface ocean pH and buffer capacity: past, present and future. Scientific Reports, 9(1), 18624.

Kartadikaria, A. R., Watanabe, A., Nadaoka, K., Adi, N. S., Prayitno, H. B., Suharsono, S., Muchtar, M., Triyulianti, I., Setiawan, A., Suratno, S., & Khasanah, E. N. (2015). CO2 sink/source characteristics in the tropical Indonesian seas. Journal of Geophysical Research: Oceans, 120(12).

Koropitan, A. F., & Ikeda, M. (2008). Three-dimensional modelling of tidal circulation and mixing over the Java Sea, Journal of Oceanography, 64(1), 61-80.

Koropitan, A. F., & Ikeda, M. (2016). Influences of physical processes and anthropogenic influx on biogeochemical cycle in the Java Sea: numerical model experiment. Procedia Environmental Sciences, 33, 532-552.

Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., John, J. G., Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., Stock, C. A., Tagliabue, A., Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H., Watanabe, M., Yamamoto, A., Yool, A., & Ziehn, T. (2020). Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences, 17, 3439–3470.

Laruelle, G. G., Cai, W.-J., Hu, X., Gruber, N., Mackenzie, F. T., & Regnier, P. (2018). Continental shelves as a variable but increasing global sink for atmospheric carbon dioxide. Nature Communications, 9(1), 454.

Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., Smith, S. J., van den Berg, M., Velders, G. J. M., Vollmer, M. K., & Wang, R. H. J. (2020). The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development, 13, 3571–3605

Mikaloff Fletcher, S. E., Gruber, N., Jacobson, A. R., Doney, S. C., Dutkiewicz, S., Gerber, M., Follows, M., Joos, F., Lindsay, K., Menemenlis, D., Mouchet, A., Müller, S. A., & Sarmiento, J. L. (2006). Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. Global Biogeochemical Cycles, 20, GB2002.

Oberhuber, J. M. (1998). An Atlas Based on `COADS' Data Set, number 15.

Orr, J. C. (2002). Global ocean storage of anthropogenic carbon (GOSAC), final report, in EC Environ. Clim. Programme, Inst. Pierre-Simon Laplace, Paris.

Orr, J. C., Maier-Reimer, E., Mikolajewicz, U., Monfray, P., Sarmiento, J. L., Toggweiler J. R., Taylor, N. K., Palmer, J., Gruber, N., Sabine, C. L., Le Quéré, C., Key, R. M., & Boutin, J. (2001). Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models. Global Biogeochemical Cycles, 15, 43–60.

Roobaert, A., Laruelle, G. G., Landschützer, P., Gruber, N., Chou, L., & Regnier, P. (2019). The spatiotemporal dynamics of the sources and sinks of CO2 in the global coastal ocean. Global Biogeochemical Cycles, 33(12), 2019GB006239.

Tacconi, L., & Muttaqin M. Z. (2020). Reducing emissions from land use change in Indonesia: An overview. Forest Policy and Economics, 108, 101979.

van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., & Kasibhatla, P. S. (2017). Global fire emissions estimates during 1997–2016. Earth System Science Data, 9, 697-720.

Wanninkhof, R., & McGillis, W. R. (1999). A cubic relationship between air–sea CO2 exchange and wind speed, Geophysical Research Letter, 26(13), 1889–1892.

Wanninkhof, R. (1992). Relationship between wind speed and gas exchange over the ocean, Journal of Geophysical Research, 97, 7373-7382.

Weiss, R. F., & Price, B.A. (1980). Nitrous oxide solubility in water and seawater. Marine Chemistry, 8(4), 347-359.

Wirasatriya, A., Sugianto, D. N., Maslukah, L., Ahkam, M. F., Wulandari, S. Y., & Helmi, M. (2020). Carbon dioxide flux in the Java Sea estimated from satellite measurements. Remote Sensing Applications: Society and Environment, 20, 1-13.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Powered by OJS | Design by ThemeOJS