Seasonal Variability of The Mixed Layer Depth in The Sulawesi Sea

Mochamad Riza Iskandar, Prima Wira Kusuma Wardhani, Toshio Suga

Abstract


The Sulawesi Sea is a semi-enclosed basin located in the Indonesian Seas and considered as the one of location in the west route of Indonesian Throughflow (ITF). There is less attention on the mixed layer depth investigation in the Sulawesi Sea. Concerning that the mixed layer plays an important role in influencing the ocean in air-sea interaction and affects biological activity, the estimation of mixed layer depth (MLD) in the Sulawesi Sea is important. Seasonal variation of the mixed layer in the Sulawesi Sea between 115°-125°E and 0°-8°N is estimated by using World Ocean Atlas 2013. Forcing elements on the mixed layer in terms of surface-forced turbulent mixing from mechanical forcing of wind stress and buoyancy forcing (from heat flux as well as freshwater flux) in the Sulawesi Sea is provided by using a reanalysis dataset. The MLD is estimated directly on grid profiles with interpolated levels based on chosen density fixed criterion of 0.03 kg.m-3 and temperature criterion of 0.5°C difference from the surface. The results show that mixed layer depth in the Sulawesi Sea varies both spatially and temporally. Generally, the deepest MLD was occurred during the southwest monsoon (JJA), and the lowest MLD was occurred during the first transition (MAM) and second transition monsoon (SON). Strengthening and weakening MLD are influenced by mechanical forcing from wind stress and buoyancy flux. In the Sulawesi Sea, the mixed layer deepening coincides with the occurrence of a maximum in wind stress, and low buoyancy flux at the surface. This condition is the opposite when mixed layer shallowing occurs.



Keywords


mixed layer depth, Sulawesi Sea, seasonality, wind stress, buoyancy flux

Full Text:

PDF

References


Abdulla, C. ., MA, A., TM, A., & Albarakati, A. (2016). Estimation of Mixed Layer Depth in the Gulf of Aden: A New Approach. PLoS ONE, 11(10). https://doi.org/10.1371/journal.pone.0165136

Abdulla, C. P., Alsaafani, M. A., Alraddadi, T. M., & Albarakati, A. M. (2018). Mixed layer depth variability in the Red Sea. Ocean Science, 14(4), 563–573. https://doi.org/10.5194/os-14-563-2018

Akima, H. (1970). A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures. J. ACM, 17(4), 589–602. https://doi.org/10.1145/321607.321609

Anderson, S. P., Weller, R. A., & Lukas., R. B. (1996). Surface Buoyancy Forcing and the Mixed Layer of the Western Pacific Warm Pool: Observations and 1D Model Results. Journal of Climate, 9(12), 3056–3085.

Bessa, I., Makaoui, A., Hilmi, K., & Afifi, M. (2018). Variability of the mixed layer depth and the ocean surface properties in the Cape Ghir region, Morocco for the period 2002–2014. Modeling Earth Systems and Environment, 4(1), 151–160. https://doi.org/10.1007/s40808-018-0411-7

Brainerd, K. E., & Gregg, M. C. (1995). Surface mixed and mixing layer depths. Deep Sea Research Part I: Oceanographic Research Papers, 42(9), 1521–1543. https://doi.org/https://DOI.org/10.1016/0967-0637(95)00068-H

Calbet, A., Agersted, M. D., Kaartvedt, S., Møhl, M., Møller, E. F., Enghoff-Poulsen, S., Paulsen, M. L., Solberg, I., Tang, K. W., Tönnesson, K., Raitsos, D. E., & Nielsen, T. G. (2015). Heterogeneous distribution of plankton within the mixed layer and its implications for bloom formation in tropical seas. Scientific Reports, 5(1), 11240. https://doi.org/10.1038/srep11240

Carton, J. A., Grodsky, S. A., & Liu, H. (2008). Variability of the Oceanic Mixed Layer, 1960–2004. Journal of Climate, 21(5), 1029–1047. https://journals.ametsoc.org/view/journals/clim/21/5/2007jcli1798.1.xml%0A

Costoya, X., DeCastro, M., Gómez-Gesteira, M., & Santos, F. (2014). Mixed Layer Depth Trends in the Bay of Biscay over the Period 1975–2010. PLoS ONE, 9(6).

Cronin, M. F., Gentemann, C. L., Edson, J., Ueki, I., Bourassa, M., Brown, S., Clayson, C. A., Fairall, C. W., Farrar, J. T., Gille, S. T., Gulev, S., Josey, S. A., Kato, S., Katsumata, M., Kent, E., Krug, M., Minnett, P. J., Parfitt, R., Pinker, R. T., … Zhang, D. (2019). Air-Sea Fluxes With a Focus on Heat and Momentum. Frontiers in Marine Science, 6, 430. https://doi.org/10.3389/fmars.2019.00430

D’Ortenzio, F., Iudicone, D., de Boyer Montegut, C., Testor, P., Antoine, D., Marullo, S., Santoleri, R., & Madec, G. (2005). Seasonal variability of the mixed layer depth in the Mediterranean Sea as derived from in situ profiles. Geophysical Research Letters, 32(12). https://doi.org/https://doi.org/10.1029/2005GL022463

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., … Vitart, F. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597. https://doi.org/10.1002/qj.828

Diehl, S., Berger, S., Ptacnik, R., & Wild, A. (2002). Phytoplankton, Light, and Nutrients in a Gradient of Mixing Depths: Field Experiments. Ecology, 83(2), 399–411. https://doi.org/10.2307/2680023

Emery, W. J., & Thomson, R. E. (2001). Chapter 2 - Data Processing and Presentation. In W. J. Emery & R. E. Thomson (Eds.), Data Analysis Methods in Physical Oceanography (pp. 159–191). Elsevier Science. https://doi.org/https://doi.org/10.1016/B978-044450756-3/50003-4

Ezer, T. (2000). On the seasonal mixed layer simulated by a basin-scale ocean model and the Mellor-Yamada turbulence scheme. Journal of Geophysical Research: Oceans, 105(C7), 16843–16855. https://doi.org/https://doi.org/10.1029/2000JC900088

Garwood Jr., R. W. (1979). Air-sea interaction and dynamics of the surface mixed layer. Reviews of Geophysics, 17(7), 1507–1524. https://doi.org/https://doi.org/10.1029/RG017i007p01507

Gill, A. E. (1982). Atmosphere-ocean dynamics / Adrian E. Gill. Academic Press. http://www.loc.gov/catdir/toc/els031/82008704.html

Gordon, A. L. (2005). Oceanography of the Indonesian Seas and Their Throughflow . Oceanography, 18.

Gordon, A. L., Tessler, Z. D., & Villanoy, C. (2011). Dual overflows into the deep Sulu Sea. Geophysical Research Letters, 38(18). https://doi.org/10.1029/2011GL048878

Guan, C., Hu, S., McPhaden, M. J., Wang, F., Gao, S., & Hou, Y. (2019). Dipole Structure of Mixed Layer Salinity in Response to El Niño-La Niña Asymmetry in the Tropical Pacific. Geophysical Research Letters, 46(21), 12165–12172. https://doi.org/https://doi.org/10.1029/2019GL084817

Hosoda, S., Ohira, T., Sato, K., & Suga, T. (2010). Improved description of global mixed-layer depth using Argo profiling floats. Journal of Oceanography, 66(6), 773–787. https://doi.org/10.1007/s10872-010-0063-3

Itoh, S., Yasuda, I., Saito, H., Tsuda, A., & Komatsu, K. (2015). Mixed layer depth and chlorophyll a: Profiling float observations in the Kuroshio–Oyashio Extension region. Journal of Marine Systems, 151, 1–14. https://doi.org/https://doi.org/10.1016/j.jmarsys.2015.06.004

James, H., & Talley, L. (2009). A New Algorithm for Finding Mixed Layer Depths with Applications to Argo Data and Subantarctic Mode Water Formation. Journal of Atmospheric and Oceanic Technology, 26,(9), 1920–1939. https://doi.org/10.1175/2009JTECHO543.1

Jang, C. J., Park, J., Park, T., & Yoo, S. (2011). Response of the ocean mixed layer depth to global warming and its impact on primary production: a case for the North Pacific Ocean. ICES Journal of Marine Science, 68(6), 996–1007.

https://doi.org/10.1093/icesjms/fsr064

Kara, A. B., Rochford, P. A., & Hurlburt, H. E. (2000). An optimal definition for ocean mixed layer depth. Journal of Geophysical Research: Oceans, 105(C7), 16803–16821. https://doi.org/https://doi.org/10.1029/2000JC900072

Kara, A. B., Rochford, P. A., & Hurlburt, H. E. (2003). Mixed layer depth variability over the global ocean. Journal of Geophysical Research: Oceans, 108(C3). https://doi.org/https://doi.org/10.1029/2000JC000736

Keerthi, M. G., Lengaigne, M., Vialard, J., de Boyer Montégut, C., & Muraleedharan, P. M. (2013). Interannual variability of the Tropical Indian Ocean mixed layer depth. Climate Dynamics, 40(3), 743–759. https://doi.org/10.1007/s00382-012-1295-2

Li, Y., Han, W., Wang, W., & Ravichandran, M. (2016). Intraseasonal Variability of SST and Precipitation in the Arabian Sea during the Indian Summer Monsoon: Impact of Ocean Mixed Layer Depth. Journal of Climate, 29(21), 7889–7910.

Lim, S., Jang, C. J., Oh, I. S., & Park, J. (2012). Climatology of the mixed layer depth in the East/Japan Sea. Journal of Marine Systems, 96–97, 1–14. https://doi.org/https://doi.org/10.1016/j.jmarsys.2012.01.003

Locarnini, R. A., Mishonov, A. V, Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D. R., Hamilton, M., & Seidov, D. (2013). World Ocean Atlas 2013, Volume 1: Temperature. S. Levitus (S. Levitus (ed.)). NOAA Atlas NESDIS 73.

Marshall, J. C., Williams, R. G., & Nurser, A. J. G. (1993). Inferring the Subduction Rate and Period over the North Atlantic. Journal of Physical Oceanography, 23(7), 1315–1329.

Masumoto, Y., Kagimoto, T., Yoshida, M., Fukuda, M., Hirose, N., & Yamagata, T. (2001). Intraseasonal eddies in the Sulawesi Sea simulated in an ocean general circulation model. Geophysical Research Letters, 28(8), 1631–1634.

https://doi.org/10.1029/2000GL011835

Masumoto, Yukio, Sasaki, H., Kagimoto, T., Komori, N., Ishida, A., Sasai, Y., Miyama, T., Motoi, T., Mitsudera, H., Takahashi, K., Sakuma, H., & Yamagata, T. (2004). A Fifty-Year Eddy-Resolving Simulation of the World Ocean - Preliminary Outcomes of OFES (OGCM for the Earth Simulator) (Vol. 1).

McDougall, T. J. (1987). Neutral Surfaces. Journal of Physical Oceanography, 17(11), 1950–1964.

https://doi.org/10.1175/1520-0485(1987)017<1950:NS>2.0.CO;2

Meijering, E. (2002). A chronology of interpolation: from ancient astronomy to modern signal and image processing. Proceedings of the IEEE, 90(3), 319–342. https://doi.org/10.1109/5.993400

Monterey, G., & S. Levitus. (1997). Seasonal Variability of Mixed Layer Depth for the World Ocean, NOAA Atlas NESDIS, vol. 14. Natl. Oceanic and Atmos. Admin., Silver Spring, Md.

Nagai, T., & Hibiya, T. (2015). Internal tides and associated vertical mixing in the Indonesian Archipelago. Journal of Geophysical Research: Oceans, 120(5), 3373–3390. https://doi.org/10.1002/2014JC010592

Obata, A., Ishizaka, J., & Endoh, M. (1996). Global verification of critical depth theory for phytoplankton bloom with climatological in situ temperature and satellite ocean color data. Journal of Geophysical Research: Oceans, 101(C9), 20657–20667. https://doi.org/https://doi.org/10.1029/96JC01734

Pollard, R. T., Rhines, P. B., & Thompson, R. O. R. Y. (1973). The deepening of the wind-Mixed layer. Geophysical Fluid Dynamics, 4(4), 381–404. https://doi.org/10.1080/03091927208236105

Radjawane, I. M., Nurdjaman, S., & Apriansyah. (2015). Seasonal variability of mixed layer depth in Indonesian Seas. AIP Conference Proceedings, 1677. https://doi.org/10.1063/1.4930690

Schofield, O., Brown, M., Kohut, J., Nardelli, S., Saba, G., Waite, N., & Ducklow, H. (2018). Changes in the upper ocean mixed layer and phytoplankton productivity along the West Antarctic Peninsula. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2122), 20170173. https://doi.org/10.1098/rsta.2017.0173

Smith Jr, W. O., & Jones, R. M. (2015). Vertical mixing, critical depths, and phytoplankton growth in the Ross Sea. ICES Journal of Marine Science, 72(6), 1952–1960. https://doi.org/10.1093/icesjms/fsu234

Srivastava, A., Dwivedi, S., & Mishra, A. K. (2018). Investigating the role of air-sea forcing on the variability of hydrography, circulation, and mixed layer depth in the Arabian Sea and Bay of Bengal. Oceanologia, 60(2), 169–186. https://doi.org/https://doi.org/10.1016/j.oceano.2017.10.001

Susanto, R. D., Gordon, A. L., Sprintall, J., & Herunadi, B. (2000). Intraseasonal variability and tides in Makassar Strait. Geophysical Research Letters, 27(10), 1499–1502. https://doi.org/DOI:10.1029/2000GL011414

Ushijima, Y., & Yoshikawa, Y. (2019). Mixed Layer Depth and Sea Surface Warming under Diurnally Cycling Surface Heat Flux in the Heating Season. Journal of Physical Oceanography, 49(7), 1769–1787.

Xue, T., Frenger, I., Prowe, A. E. F., José, Y. S., & Oschlies, A. (2021). Mixed layer depth dominates over upwelling in regulating the seasonality of ecosystem functioning in the Peruvian Upwelling System. Biogeosciences Discuss., 2021, 1–29. https://doi.org/10.5194/bg-2021-113

Yeh, S.-W., Yim, B. Y., Noh, Y., & Dewitte, B. (2009). Changes in mixed layer depth under climate change projections in two CGCMs. Climate Dynamics, 33(2), 199–213. https://doi.org/10.1007/s00382-009-0530-y

Yoshikawa, Y. (2015). Scaling Surface Mixing/Mixed Layer Depth under Stabilizing Buoyancy Flux. Journal of Physical Oceanography, 45(1), 247–258.

Yu, J., Gan, B., Jing, Z., & Wu, L. (2020). Winter Extreme Mixed Layer Depth South of the Kuroshio Extension. Journal of Climate, 33(24), 10419–10436.

Zweng, M. M., Reagan, J. R., Antonov, J. I., Locarnini, R. A., Mishonov, A. V, Boyer, T. P., Garcia, H. E., Baranova, O. K., Johnson, D. R., D.Seidov, & Biddle, M. M. (2013). World Ocean Atlas 2013, Volume 2: Salinity (S. Levitus (ed.)). NOAA Atlas NESDIS 74.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Powered by OJS | Design by ThemeOJS